
Journal of Applied Mechanics and Technical Physics. Vol. 35, No. 2, 1994 

P R E S S U R E  F I L T R A T I O N  I N  A C R A C K E D  

AND POROUS STRATUM 

A. M. Ametov UDC 532.546 

The main assumptions of the theory for nonsteady-state filtration in a cracked and porous material are given in [1]. 
A general solution is given in the present work for the first and second boundary problems of filtration in cracks. 

1. We assume that pressure equals zero in a cracked and porous material occupying a half-space x >__ 0. From instant 

t = 0 at boundary x = 0 pressure starts to change by the rule pi(t, 0) = f(t). The distribution of pressure in cracks is 

determined from solution of the problem in [1] 

OP t 02p! O3p! 

ot - ~ + tl Ox2ot; (1.1) 

p,(t,O) = f(t); (1.2) 

a2p~(O.x) 
re ~ 2 - Apt(O,x ) = _Ap2(O,x); 

(1.3) 
p2(O,x) = O, p,(0,o) = f(o) .  

Here Pl, P2 are the pressures in cracks and blocks; x, 7/, A are coefficients introduced in [1] where it was shown that the initial 

pressure distribution in cracks should be found from problem (1.3) whose solution is 

p,(O,x) = f ( O ) e x p ( - x / ~ ) .  (1.4) 

It is easy to prove; the solution of the f'trst boundary problem (1.1), (1.2), (1.4) is a function 

2x ~ ~ flsin (~) dfldu + f ( t ) e x p ( - x / ~ ) .  pt(t,x) = -~- f (u)  exp(-re( t  - u)fl2/(1 + rift2)) 0 ~ ,/fl2)2 
0 0 

(1.5) 

With ~ --, 0 problem (1. I), (1.2), (1.4) is converted into the first boundary problem for the piezoelectric conductivity 
equation [2, Eq. (861.21)] 

ap! 02pl 
at - 02 ,  pl(t,O) = f(t), pt(O,x) = 0, (1.6) 

and its solution is converted into the solution of problem (1.6) 

[ ~ flsin(x~) d f ldu+ 2x ~ f(u) e x p ( - •  - u)fl2/(1 + ~lfl2)) 0 ~ ,//~2)2 lira T 
q-*O ~ 0 

/ (OexP(-X/vr~)] = ~- f (u)  exp ( -~ ( t  - u)/~2)flsin (xfl)dfldu = 
0 0 

t 
2 ~  / ( u ) ( t -  u ) -3 /2exp( -x2 /4~( t -  u))du. 
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It is noted that the pressure in blocks is determined from the equation in [1] 

~, a2p,(t,x) 
p~( t ,x )  = p l ( t , x )  a Ox 2 

2. We consider the problem of flow towards a drainage gallery. Then conditions (1.2), (1.4), and solution (1.5) are 

written in the form 
Pt(t,O) = Po = const, p l ( O , x )  = p o e x p ( - x / d ' ~ ) ,  

2 
p , ( t , x )  = P0[l - 2 ~ exp ( - ~ - 1  +-~#2)sin ((x/-4"~'~)//)'dfl'l (2.1) 

0 fl(l + //2) J" 

We calculate the flow of liquid through boundary x = 0. By differentiating expression (2.1) with respect to x with x = 0 we 
obtain 

2P0k t ? 
- 0p,, t o e x p ( - 7  1 q = ~' ox ~=o - '~4-~ o ~2) + / / "  (2.2) 

where k 1 is crack permeability; # is liquid viscosity. By using the Laplace method (see for example [3]) we find asymptotic 
expressions for pressure (2.1) with small x and flow (2.2) with t --, oo : 

_ - . ~  

It can be seen from expression (2.3) that with filtration in porous material (r/ = 0) the pressure will be greater and the flow 
will be less than with a cracked and porous material. This is connected with the fact that as a result of exchange of liquid 
between blocks and cracks liquid entering a boundary is partly released by blocks adjacent to it. It is found that blocks are 'run- 
offs' for pressure from cracks and 'sources' of liquid for cracks. With t < ~/x from relationship (2.2) we obtain 

Pokl [ 1 _ 1 
q(t)  - 4-q~, k 2 ~ - ) "  (2.4) 

3. We find pressure distribution with prescribed flow of liquid through a boundary (second boundary problem). For 
this we replace boundary 6ondition (1.2) as flows: 

ap~(t,0) 
ax ~ - &̂ k~ ' t(t)" (3.1) 

Correspondingly initial condition (1.4) is also changed: 

Pt(O,x) = t L q ( O ) v ~ e x p ( - x / x / ' ~ ) .  
gt (3.2) 

It is easy to prove that the solution of the problem (1.1), (3.1), (3.2) is given by the equation 

= 2~ 'r q(u) ~ e x p ( - ~ ( t - , , - - L - - I  c=C~) a~J,, + PI(t,x) 
- ~ ,  ~ "o , " l + ~//') (1 + . / /b" " 

k~(q(t) dqexp( -x /V '~) .  

with q(t) = qo = const from relationship (3.3) we have 

(3.3) 

/L [2f~ 1 -  exp ( -~a / ( l  +'Tfla))-e~ + v~exp(-x/vr~ ' ) ]  �9 
Pz(t ,  x )  = klqo :t " - ~  I + Tiff 2ap (3.4) 

With t < 7//x it follows from relationship (3.4) that 
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(3.5) 



It can be seen by comparing Eqs. (2.4) and (3.5) that they are similar to each other since the latter may be converted 

Pl( t ,O)k l  1 Pl ( t 'O)k l  {1 --  1 :~t 

2 ~/ 

and from them it follows that in order to maintain a constant flow of liquid through the boundary pressure should increase 

linearly, but with a fixed pressure in the gallery flow decreases linearly. 

REFERENCES 

. 

2. 

3. 

G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Liquid and Gas Movement in Natural Strata [in Russian], Nedra, 

Moscow (1984). 
G. B. Dwight, Tables of Integrals and Other Mathematical Equations [Russian translation], Nauka, Moscow (1977). 

A. Naife, Introduction to Disturbance Theory [Russian translation], Mir, Moscow (1984). 

245 


